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A dispute about the existence of an additional time associated with the Goos-Hänchen shift has recently
arisen. By analyzing light propagation in an optical planar waveguide with both the zigzag-ray model and the
electromagnetic theory, we show in this paper that the Goos-Hänchen time really exists, and the total time
delay upon total reflection is the sum of the group delay time and the Goos-Hänchen time. The causality
paradox of total reflection of a TM wave upon an ideal nonabsorbing plasma mirror is also solved with the
consideration of a negative Goos-Hänchen shift.
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I. INTRODUCTION

The time delay upon total reflection has attracted consid-
erable attention recently. A calculation �1� has predicted that
the frustrated Gires-Tournois interferometer exhibits a nega-
tive delay time for total reflection, which seems to contradict
causality by considering its 100% reflectivity. To solve this
causality paradox, Resch et al. �2� showed that the Goos-
Hänchen shift contributes an extra positive time, the Goos-
Hänchen time, which is always large enough to make the
total time delay of the frustrated Gires-Tournois interferom-
eter positive. But recently, another example �3� is presented;
that is, the total reflection of a plane p �or TM� wave from
vacuum upon an ideal nonabsorbing plasma mirror, in which,
if the Goos-Hänchen time is included, the total time delay
can become negative. Based on the example mentioned
above, it is indicated �3� that the existence of the Goos-
Hänchen time is doubtful and the causality paradox upon
total reflection remains open. And now, the situation we are
faced with is that the total reflection upon the frustrated
Gires-Tournois interferometer contradicts causality if the
Goos-Hänchen time is not included, and the total reflection
upon an ideal nonabsorbing plasma mirror violates causality
if the Goos-Hänchen time is included.

In this paper, we demonstrate that the Goos-Hänchen time
upon total reflection really exists. We calculate the phase of a
guided mode experienced in one period of ray propagation in
an optical planar waveguide with both the zigzag-ray model
and the electromagnetic theory. It is shown that the zigzag-
ray model coincides with the electromagnetic theory only if
the phase accumulated during the Goos-Hänchen shift �2�,
which is the physical origin of the Goos-Hänchen time, is
taken into account. Analysis of the time delay of a guided
mode shows that the total time delay upon total reflection is
the sum of the group delay time and the Goos-Hänchen time.
Thus, causality is preserved in the frustrated Gires-Tournois
interferometer. For the case of total reflection of a plane TM
wave upon an ideal nonabsorbing plasma mirror, we point
out that the location where total reflection occurs is not at the
interface between two relevant media, but in front of it. By

considering this special effect, the time delay is always posi-
tive. As a result, we suggest no problem with the relativistic
causality.

II. GROUP DELAY TIME AND GOOS-HÄNCHEN TIME

In this section, we introduce the group delay time and the
Goos-Hänchen time defined in Ref. �3� at first. Figure 1
shows a beam undergoing reflection from an interface at an
angle of incidence beyond critical. In this diagram, �x is the
Goos-Hänchen shift and kx�x is the phase accumulated dur-
ing that shift, where kx is the x component of the wave vec-
tor. The reflection phase shift �R �2� can be calculated by
employing the Fresnel formula. We believe that this phase
shift is not the total phase shift, as the Fresnel formula only
deals with the components of wave vectors normal to the
interface. The total phase shift �tot �2,4� upon total reflection
should be written as

�tot = �R + kx�x = �R +
n1�

c
sin ��x �1�

where � is angular frequency of the light, � is angle of
incidence, n1 is index of refraction of the first medium, and c
is the speed of light in vacuum. By using the stationary phase
theory, the total time delay �2� is

� =
��R

��
+

n1

c
sin ��x . �2�

The time delay in Eq. �2� consists of two components. The
first term, which is caused by dispersion of the reflection
phase shift �R, is defined as the group delay time �g �3�. The
second term is an additional contribution caused by the phase
kx�x and is defined as the Goos-Hänchen time. The Goos-
Hänchen shift and the Goos-Hänchen time �2� can be written
as
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FIG. 1. Beam undergoing reflection from an interface at an

angle of incidence beyond critical.
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�x = −
c

n1� cos �

��R

��
, �3�

�GH =
n1

c
sin ��x = −

tan �

�

��R

��
. �4�

If the second medium with a refractive index of n2 is
semi-infinite, the reflection phase shift of total reflection is
simply expressed as �R=�12, and �12 is obtained from
Fresnel formula as

tan�− �12

2
� = �

�n1
2 sin2 � − n2

2�1/2

n1 cos �
, �TE waves�

n1
2

n2
2

�n1
2 sin2 � − n2

2�1/2

n1 cos �
, �TM waves� � .

�5�

The Goos-Hänchen shift is then obtained from Eqs. �3� and
�5� as

�x12 =
2q12 tan �

k0�n1
2 sin2 � − n2

2�1/2 , �6�

where k0 is the wave number of light in vacuum and q12 is
expressed as

q12 = 1 �7�

for TE waves and

q12 =
n1

2n2
2�n1

2 − n2
2�

n2
4n1

2 cos2 � + n1
4�n1

2 sin2 � − n2
2�

�8�

for TM waves.

III. PHASE SHIFT UPON TOTAL REFLECTION

From Sec. II, we can see that the physical origin of the
Goos-Hänchen time is that the total phase shift �tot includes
the phase kx�x arising from the Goos-Hänchen shift. In order
to confirm the existence of Goos-Hänchen time upon total
reflection, we start by confirming that the total phase shift in
Eq. �1� is correct.

Figure 2 shows an optical planar waveguide where a guid-
ing layer of high refractive index is sandwiched between two
semi-infinite cladding layers of low refractive indices. Guid-
ing is achieved by total reflection of the optical rays upon
two cladding layers. The dispersion relation of a guided
mode for both polarizations is given by

2�h + �12 + �13 = 2m� �9�

with

� = �k0
2n1

2 − 	2�1/2 = k0n1 cos � , �10�

tan�− �1j

2
� = � �Nm

2 − nj
2

n1
2 − Nm

2 �1/2

�TE modes�

n1
2

nj
2�Nm

2 − nj
2

n1
2 − Nm

2 �1/2

�TM modes� � �11�

	 = k0Nm = k0n1 sin � , �12�

where m is the mode order, Nm is the effective index of the
guided mode, h is the thickness of the guiding layer, 	 is
propagation constant, � is the component of wave vector
normal to the propagation direction in guiding layer, � is the
angle of incidence, and j=2,3 represents two cladding lay-
ers, respectively.

We consider the propagation of a guided mode with a
propagation constant of 	. According to the electromagnetic
theory of planar waveguide, the field distribution of the
guided mode can be expressed as

E�x,y,t� = E�y�exp�i�	x − �t�� , �13�

where E�y� is the amplitude of the guided mode. Figure 2
illustrates the propagation of the guided mode by employing
the zigzag-ray model. The distance between A and B, which
corresponds to one period of propagation of the zigzag rays
in guiding layer, is written as

l = 2h tan � + �x12 + �x13, �14�

where �x12 and �x13 are the Goos-Hänchen shifts at two
boundaries. By considering Eq. �13�, the phase shift of the
guided mode in this distance is


mode = 	l . �15�

In zigzag-ray model, the total phase shift of the rays in this
range is obtained from Eq. �1� as


ray = 2k0n1
h

cos �
+ �12 + 	�x12 + �13 + 	�x13, �16�

which can be expanded as


ray = 2k0n1h cos � + 2k0n1h sin � tan � + �12 + 	�x12 + �13

+ 	�x13. �17�

Substituting Eqs. �10�, �12�, and �14� into Eq. �17�, we obtain


ray = �2�h + �12 + �13� + 	l . �18�

The first term in the right-hand side of Eq. �18� equals 2m�
for a guided mode, which is exactly the dispersion relation of
Eq. �9�, and the second term is the same as the phase shift in
Eq. �15� obtained from the electromagnetic theory. There-
fore, the zigzag-ray model of the waveguide coincides with
the electromagnetic theory only at the condition that the
phases arising from the Goos-Hänchen shifts are included.
And then, the expression of total phase shift in Eq. �1� is
correct.

FIG. 2. Sketch of the zigzag-ray model of a planar
waveguide.
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IV. THE EXISTENCE OF THE GOOS-HÄNCHEN TIME
UPON TOTAL REFLECTION

In this section, we confirm the existence of the Goos-
Hänchen time by employing the same planar waveguide as
described in Fig. 2. For simplicity, the guiding layer with
refractive index of n1 and two cladding layers with refractive
indices of n2 and n3 are assumed without dispersion. In this
case, the group delay times of total reflection at two bound-
aries of the guiding layer are

�g =
��1j

��
= 0, j = 2,3, �19�

and the Goos-Hänchen times alone are the total time delays
upon total reflection. We also consider a guided mode with
an effective index of Nm=n1 sin �. The Goos-Hänchen shifts
at two boundaries are rewritten from Eq. �6� as

�x1j =
2q1j tan �

k0�Nm
2 − nj

2�1/2 , j = 2,3 �20�

with

q1j = 1 �21�

for TE modes and

q1j =
n1

2nj
2�n1

2 − nj
2�

nj
4�n1

2 − Nm
2 � + n1

4�Nm
2 − nj

2�
�22�

for TM modes. Expression �20� is also the general form of
the Goos-Hänchen shift for total reflection upon a semi-
infinite medium. For both polarizations, substituting Eq. �20�
into Eq. �14�, we obtain

l = 2heff tan � , �23�

where heff is the effective thickness of the guided mode �5,6�
and has the form of

heff = h +
q12

k0�Nm
2 − n2

2�1/2 +
q13

k0�Nm
2 − n3

3�1/2 . �24�

Although Eq. �23� has the same form for both TE and TM
modes, the effective thicknesses of the TE and the TM
modes are different. If we extend the incident and reflected
rays into two cladding layers, they cross at points O12 and
O13 in Fig. 2, respectively. And then, we can see from Eq.
�23� and Fig. 2 that the rays behave as if they were propa-
gating in a guide of effective thickness �5,6�.

The propagation time of the guided mode in length l can
be calculated by two methods: �i� the zigzag-ray model takes
account of Goos-Hänchen times that occur at the guiding
layer boundaries and �ii� the electromagnetic theory deter-
mines the propagation time by dividing the length l with the
group velocity. Since the group velocity of the guided mode
is derived from the rigid electromagnetic theory, if the times
calculated from two methods are equal, the existence of
Goos-Hänchen time is confirmed.

By employing Eqs. �4� and �20�, the Goos-Hänchen times
that occur at two boundaries are

�GH
�1,j� =

2n1q1j sin � tan �

ck0�Nm
2 − nj

2�1/2 =
2Nm

2

c�n1
2 − Nm

2 �1/2

q1j

k0�Nm
2 − nj

2�1/2 .

�25�

It is should be noted that the same expression as Eq. �25� has
been obtained in Ref. �5� by using ��1j /�� in a waveguide.
But in derivations of Ref. �5�, the authors treat the propaga-
tion constant as an independent variable and think that the
partial derivative of the propagation constant with respect to
the angular frequency is zero. Those derivations are correct
only for guided modes in a waveguide and cannot be applied
to the general case of total reflection upon a semi-infinite
medium. Thus, the physical meaning of Eq. �25� is not the
group delay time defined in Ref. �3�, but the Goos-Hänchen
time defined in Eq. �4�.

By considering the zigzag-ray model as shown in Fig. 2,
the optical path of the rays in guiding layer in the range
between A and B is 2n1h / cos �, and the propagation time is

�ray =
2hn1

c cos �
=

2hn1
2

c�n1
2 − Nm

2 �1/2 . �26�

As a result, the time delay of the rays in length l calculated
from method �i� is given by the sum of �ray and two Goos-
Hänchen times; that is

�tot = �ray + �GH
�1,2� + �GH

�1,3� =
2Nm

2 heff

c�n1
2 − Nm

2 �1/2 +
2h�n1

2 − Nm
2 �1/2

c
.

�27�

Next, we use method �ii� to calculate the propagation time
of the guided mode in the length l. The group velocity of the
guided mode is given by

1

vg
=

Nm

c
+ k0

�Nm

��
=

Nm

c
+

�n1
2 − Nm

2 �h
cNmheff

, �28�

where vg is the group velocity of the guided mode and
�Nm /�� is calculated by performing the partial derivative of
dispersion relation with respect to the angle frequency. The
group velocity can also be obtained by employing the rela-
tion vg= P /W, where P is the power flow and W is the stored
energy of the waveguide �5�. For both TE and TM polariza-
tions, the time delay of the guided mode in the length l is

�mode =
l

vg
=

2Nm
2 heff

c�n1
2 − Nm

2 �1/2 +
2h�n1

2 − Nm
2 �1/2

c
. �29�

From Eqs. �27� and �29�, it is shown that, only if the Goos-
Hänchen times are taken into account, does the zigzag-ray
model of waveguide coincide with the electromagnetic
theory. This example indicates that the Goos-Hänchen time
upon total reflection really exists. If ��R /�� is not zero, the
total time delay upon total reflection is the sum of the group
delay time and the Goos-Hänchen time. Thus, causality is
preserved in the frustrated Gires-Tournois interferometer �2�.
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V. TOTAL REFLECTION OF A TM WAVE
UPON A MEDIUM WITH NEGATIVE

PERMITTIVITY

The total reflection of a TM wave upon a medium with
negative permittivity,

�2 = n2
2 � 0 �30�

deserves special consideration. In this case, we can see from
Eqs. �6� and �8� that the Goos-Hänchen shift �x12 is nega-
tive. The Goos-Hänchen time �GH is also negative, which can
result in a negative total time delay and seems to violate
relativistic causality, for example, the total reflection of a
plane TM wave from vacuum upon an ideal nonabsorbing
plasma mirror �3�.

In fact, this is not the case. Let us consider a planar wave-
guide where the guiding layer has a positive refractive index
n1 and two cladding layers have negative permittivities of
�2=n2

2�0 and �3=n3
2�0. For simplicity, we also assume

that n1, n2, and n3 are without dispersion. As shown in Fig. 3,
the effective thickness of a TM mode has the relation of

heff = h +
q12

k0�Nm
2 − n2

2�1/2 +
q13

k0�Nm
2 − n3

2�1/2 � h . �31�

With the same procedures in Sec. IV, the same expressions as
Eqs. �27� and �29� can also be obtained. Therefore, the nega-
tive Goos-Hänchen times at two boundaries coincide as well
with the electromagnetic theory of the waveguide.

Next, we will show that the negative Goos-Hänchen time
does not contradict causality. Because of the negative Goos-
Hänchen shifts at two boundaries of the guiding layer, heff
�h holds true, and the two crossing points O12 and O13 in
Fig. 3 are not located in the cladding layers, but in the guid-
ing layer. According to electromagnetic theory, because of
negative permittivity, the direction of the time-averaged
Poynting vector and its flux lines �7� in the two cladding
layers of the slab waveguide in Fig. 3 is opposite to the
propagation direction of the guided mode, resulting in the
total power flow of the guided mode concentrating in the
range of effective thickness �5,6� that is less than the thick-
ness of the guiding layer. In ray model, this effect can only
be explained as that total reflections occur at points O12 and
O13. This conclusion is also supported by Ref. �7� which
calculates time-averaged Poynting vectors and its flux lines
in the two media for a Gaussian beam in the TM state in the
case of a negative Goos-Hänchen shift. It is shown that the
incoming flux lines do not pass through the interface be-
tween two media at all, but are all located in the first me-

dium, and the intersection of the incident beam axis and the
reflected beam axis is exactly the crossing point O12 or O13
shown in Fig. 3. From this point of view, the total reflection
of a TM wave upon a medium with negative permittivity is
shown in Fig. 4. We can see from Fig. 4 that the negative
Goos-Hänchen shift and time are reasonable because the
point P1 is selected as reference point, whereas the total re-
flection occurs at the point O. Equation �4� indicates that the
Goos-Hänchen time is exactly the amount of time it would
take a light wave front to move a distance �x12 sin �. So the
Goos-Hänchen time in Fig. 4 is −n1P1P3 /c. The times of
light propagation from O to P1 and from P2 to O are
n1OP1 /c and n1P2O /c. As a result, if we calculate the time
delay at the point O where the total reflection occurs, the
time delay is

�GH� =
n1�OP1 + P2O − P1P3�

c

=
n1�x12�sin � − 1/sin ��

c

=
− 2n1q12 cos �

��n1
2 sin2 � − n2

2�1/2 , �32�

which is always positive by considering OP1+ P2O
 P1P3
or the negative �x12.

In order to testify Eq. �32�, the time delay of a TM mode
during one period of ray propagation in the waveguide illus-
trated in Fig. 3 is recalculated by considering that the optical
rays are reflected at the points O12 and O13 with the time
delays at two points given by Eq. �32�. The optical path of
the rays in length l is then 2n1heff / cos �. By considering Eqs.
�32� and �24�, and Nm=n1 sin �, the time delay in length l is
written as

�tot =
2n1heff

c cos �
−

2n1q12 cos �

��Nm
2 − n2

2�1/2 −
2n1q13 cos �

��Nm
2 − n3

2�1/2

=
2n1

2heff

c�n1
2 − Nm

2 �1/2 −
2�n1

2 − Nm
2 �1/2q12

ck0�Nm
2 − n2

2�1/2 −
2�n1

2 − Nm
2 �1/2q13

ck0�Nm
2 − n3

2�1/2

=
2Nm

2 heff

c�n1
2 − Nm

2 �1/2 +
2h�n1

2 − Nm
2 �1/2

c
. �33�

The equivalence of Eqs. �33� and �29� shows that, for total
reflection with a negative Goos-Hänchen shift, the Goos-
Hänchen time should be expressed as Eq. �33� and the loca-
tion where total reflection occurs lies in the crossing point of

FIG. 3. Zigzag propagation of the rays in planar waveguide with
both cladding layers owning negative permittivities.

FIG. 4. Total reflection with a negative Goos-Hänchen shift.
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the incident ray and the reflected ray. Therefore, by consid-
ering this effect, the causality paradox does not exist.

In this paper, we deal with the total reflection of continu-
ous and monochromatic light. Therefore, in the case of total
reflection with a negative Goos-Hänchen shift, the closed-
loop flux lines �7� around the interface have already existed.
Since the amplitude of the incident light is invariant in time,
there is no energy exchange between the closed-loop flux
lines and the flux lines of the incident and reflected lights.
But the electromagnetic fields around the interface, which
result in the closed-loop flux lines, and the fields of the in-
cident and reflected lights will interact with each other, re-
sulting in that total reflection occurs before the light reaches
the interface. In waveguide, this explains why the effective
thickness of the guided mode is less than the thickness of the
guiding layer. Although the light is reflected before it reaches
the interface, we believe that the light knows the interface is
there by considering that the energy of the closed-loop flux
lines around the interface also comes from the incident light
and all fields �the fields around the interface and the fields of
incident and reflected lights� must comply with the Max-
well’s equation. In the case of light pulses incidence, energy

transfer will occur between the energy around the interface
and the energies of incident and reflected pulses, and the
result will be different.

VI. CONCLUSION

By employing an optical planar waveguide with the clad-
ding layers of positive or negative permittivities, we have
confirmed the existence of Goos-Hänchen time upon total
reflection. The time delay of total reflection is the sum of the
Goos-Hänchen time and the group delay time. The Goos-
Hänchen time is always positive, suggesting that there is no
problem with the relativistic causality in the frustrated Gires-
Tournois interferometer and the total reflection of a TM wave
upon an ideal nonabsorbing plasma mirror.
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